.
... not all calamities are individual, and tranching still hadn't solved all the problems of mortgage-pool risk. Some things, like falling house prices, affect a large number of people at once. If home values in your neighborhood decline and you lose some of your equity, there's a good chance your neighbors will lose theirs as well. If, as a result, you default on your mortgage, there's a higher probability they will default, too. That's called correlation—the degree to which one variable moves in line with another—and measuring it is an important part of determining how risky mortgage bonds are.
Investors like risk, as long as they can price it. What they hate is uncertainty—not knowing how big the risk is. As a result, bond investors and mortgage lenders desperately want to be able to measure, model, and price correlation. Before quantitative models came along, the only time investors were comfortable putting their money in mortgage pools was when there was no risk whatsoever—in other words, when the bonds were guaranteed implicitly by the federal government through Fannie Mae or Freddie Mac.
...
In 2000, while working at JPMorgan Chase, Li published a paper in The Journal of Fixed Income titled "On Default Correlation: A Copula Function Approach." (In statistics, a copula is used to couple the behavior of two or more variables.) Using some relatively simple math—by Wall Street standards, anyway—Li came up with an ingenious way to model default correlation without even looking at historical default data. Instead, he used market data about the prices of instruments known as credit default swaps.
If you're an investor, you have a choice these days: You can either lend directly to borrowers or sell investors credit default swaps, insurance against those same borrowers defaulting. Either way, you get a regular income stream—interest payments or insurance payments—and either way, if the borrower defaults, you lose a lot of money. The returns on both strategies are nearly identical, but because an unlimited number of credit default swaps can be sold against each borrower, the supply of swaps isn't constrained the way the supply of bonds is, so the CDS market managed to grow extremely rapidly. Though credit default swaps were relatively new when Li's paper came out, they soon became a bigger and more liquid market than the bonds on which they were based.
When the price of a credit default swap goes up, that indicates that default risk has risen. Li's breakthrough was that instead of waiting to assemble enough historical data about actual defaults, which are rare in the real world, he used historical prices from the CDS market. It's hard to build a historical model to predict Alice's or Britney's behavior, but anybody could see whether the price of credit default swaps on Britney tended to move in the same direction as that on Alice. If it did, then there was a strong correlation between Alice's and Britney's default risks, as priced by the market. Li wrote a model that used price rather than real-world default data as a shortcut (making an implicit assumption that financial markets in general, and CDS markets in particular, can price default risk correctly).
the whole thing here